Real Tornado

Akio Hizume, Yoshikazu Yamagishi Department of Applied Mathematics and Informatics Ryukoku University Seta, Otsu, Shiga, Japan

> E-mail: akio@starcage.org yg@rins.ryukoku.ac.jp

Abstract

The continued fraction expansion of a real number R > 0 generates a family of spiral triangular patterns, called "tornadoes." Each tornado consists of similar triangles, any two of which are non-congruent.

Basic Operation

Let R > 0 and 0 < s < 1. In the plane, the sequence of points $V(j) = (s^j \cos 2\pi j R, s^j \sin 2\pi j R)$ for $j = 0,1,\cdots$, which we call the 'vertices', naturally converges to the origin. Fix an integer k > 0, which is called the 'modulo' or the 'step size', and join the vertex V(j) with V(j+k) by the line segment $\overline{V(j)V(j+k)}$ for $j \ge 0$.

Fibonacci Tornado

The Fibonacci numbers f_n are defined by $f_1 = f_2 = 1$ and $f_n = f_{n-2} + f_{n-1}$, n > 2. In the previous paper [2], we showed that if $k = f_{n-1}$ and $R = \tau$, where $\tau = (1 + \sqrt{5})/2$ is the golden ratio, there exists a 0 < s < 1 such that the vertex $V(j+f_{n+2})$ lands on segment $\overline{V(j+f_{n+1})V(j+f_n)}$ for each $j \ge 0$. By the Basic Operation above, we obtain the spiral pattern of similar triangles as shown in Figure 1 (k = 2), which is called a "tornado". As k gets larger, we could see that the tornado comes out like a blooming flower, while the argument jR of each vertex V(j)remains unchanged.

Remark that the well-known spirals as in Figure 2 are different from our tornadoes because they have congruent triangles.

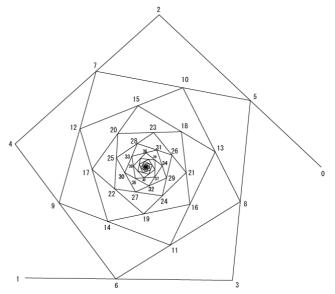
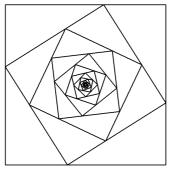


Figure 1: *Fibonacci Tornado*. $[\tau,3,5]$



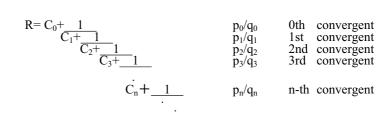


Figure 2 : A Non-Fibonacci Tornado.

Figure 3: Continued Fraction and Convergents

Real Tornado

A generic real number R also generates a family of tornadoes. As is well-known (see [1]), the continued fraction expansion of R as in the Figure 3 is defined by $R=C_0+\varepsilon_0$, $0\le\varepsilon_0<1$, and $1/\varepsilon_n=C_{n+1}+\varepsilon_{n+1}$, $0\le\varepsilon_{n+1}<1$ for $n\ge0$, where C_n are called the partial denominators. If R is rational, it is related to the Euclidean algorithm and stops when $\varepsilon_n=0$. The n-th convergent p_n/q_n is defined by $p_0=C_0$, $q_0=1$, $p_1=C_1p_0+1$, $q_1=C_1$, and $p_{n+1}=C_{n+1}p_n+p_{n-1}$, $q_{n+1}=C_{n+1}q_n+q_{n-1}$ for n>0. It is known that p_n/q_n are the best approximations of R, where

$$\frac{p_0}{q_0} < \frac{p_2}{q_2} < \dots < R < \dots < \frac{p_3}{q_3} < \frac{p_1}{q_1}$$
, and $\left| \frac{p_n}{q_n} - R \right| > \left| \frac{p_{n+1}}{q_{n+1}} - R \right|$ for $n \ge 0$.

For example, the convergents of $R = \sqrt{3}$ are 1/1, 2/1, 5/3, 7/4, 19/11, 26/15, 71/41, The denominators q_n and q_{n+1} are coprime.

Choose any pair of consecutive convergents p_n/q_n and p_{n+1}/q_{n+1} , and denote by $q=q_n$ and $q'=q_{n+1}$. Define the step size by k=q'-q. Then there exists a unique 0 < s < 1 such that under the Basic Operation the vertex V(j+q+q') lands on the segment $\overline{V(j+q)V(j+q')}$ and we obtain a spiral pattern named as the tornado [R,q,q'], consisting of similar triangles $T_j=\Delta V(j)V(j+q)V(j+q')$ for $j \ge 0$. Figure 4 presents the tornadoes $[R,q,q']=[\sqrt{3},3,4]$ and $[\sqrt{3},4,11]$.

The basic idea of the Real Tornado was originally published in Japanese in [3]. Here we show how to

find a 0 < s < 1. Denote the length of the three edges of T_j by

$$a(j) = |V(j+q)V(j+q')|,$$

$$b(j) = |V(j)V(j+q)|,$$

$$c(j) = |V(j)V(j+q')|.$$

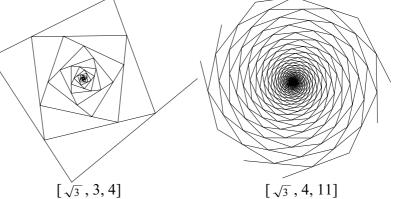


Figure 4: $\sqrt{3}$ *Tornado*.

MANIFOLD #19, Oct. 2009 -7-

By Figure 5 we can see that

$$\begin{aligned} &a(j) \\ &= \left| V(j+q)V(j+q') \right| \\ &= \left| V(j+q)V(j+q+q') \right| + \left| V(j+q+q')V(j+q') \right| \\ &= s^{q} \left| V(j)V(j+q') \right| + s^{q'} \left| V(j)V(j+q) \right| \\ &= s^{q} c(j) + s^{q+k} b(j). \end{aligned}$$

The three angles of T_i are

$$\phi = 2\pi Rq' = 2\pi R(q+k)$$
, $\delta = -2\pi Rq$, and $\theta = 2\pi Rk$

Figure 5 : Principle.

V(j)

or

$$\phi = -2\pi Rq' = -2\pi R(q+k)$$
, $\delta = 2\pi Rq$, and $\theta = -2\pi Rk$,

where the signs are chosen to satisfy that $\sin \phi$, $\sin \delta$ and $\sin \theta$ are all positive. The law of sines is expressed by

$$\frac{a(j)}{\sin \theta} = \frac{b(j)}{\sin \delta} = \frac{c(j)}{\sin \phi},$$

and we obtain the equation

$$s^{q'}\sin(2\pi Rq) - s^{q}\sin(2\pi Rq') + \sin(2\pi Rk) = 0$$
.

It is easy to see that this equation has a unique solution 0 < s < 1.

Additional Results

Conversely, we can also prove that any possible tornado [R,q,q'] with q,q' positive is related to the continued fraction expansion of R.

Theorem: Let R be a real number and q, q' positive integers. There exists a tornado [R, q, q'] if and only

if R has a convergent $\frac{p_n}{q_n}$ and an (intermediate) convergent $\frac{cp_n + p_{n-1}}{cq_n + q_{n-1}}$, $0 < c \le C_{n+1}$, where we denote

by $p = p_n, q = q_n, p' = cp_n + p_{n+1}$ and $q' = cq_n + q_{n+1}$, such that

(1) R is distinct from
$$\frac{p}{q}$$
 and $\frac{p'}{q'}$, that is, $\frac{p}{q} < R < \frac{p'}{q'}$ or $\frac{p'}{q'} < R < \frac{p}{q}$, and

(2)
$$|\{qR\} - \{q'R\}| > 1/2$$
, where $0 \le \{x\} = x - [x] < 1$ denotes the fractional part.

See [4] for the proof and further discussions. Note that the golden ratio τ is a special irrational number which has no intermediate convergents.

Acknowledgements

The authors would like to thank the reviewers for their helpful comments and suggestions. They suggested to consider the equation $z^{q+k} = \alpha z^k + (1-\alpha)$ with $0 < \alpha < 1$ given, where q and k are relatively prime. By experiments, they claim that the tornado [R, q, q + k] is obtained by using the root

 $z = se^{2\pi iR} \neq 1$ of the largest magnitude. Note that in our setting above, the ratio α tends to 0 or 1 as R approaches to p/q or p'/q' respectively.

References

- [1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, fifth edition, Oxford, 1979.
- [2] Akio Hizume, Real Tornado, MANIFOLD #17, pp. 8-11. 2008. (in Japanese)
- [3] Akio Hizume, Fibonacci Tornado, Bridges Proceedings, pp. 485-486. 2008.
- [4] Akio Hizume and Yoshikazu Yamagishi, Monohedral similarity tilings, in preparation.

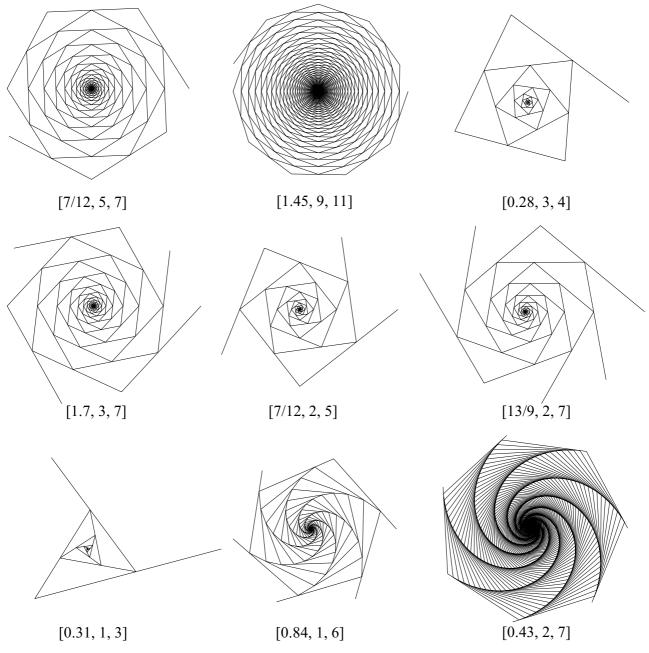


Figure 6: Real Tornado Samples.

MANIFOLD #19, Oct. 2009 -9-