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Abstract 

The continued fraction expansion of a real number 0R generates a family of spiral triangular patterns, called 

“tornadoes.” Each tornado consists of similar triangles, any two of which are non-congruent. 

Basic Operation 

Let 0R and 10 s . In the plane, the sequence of points )2sin,2cos()( jRsjRsjV jj

for ,1,0j , which we call the ‘vertices’, naturally converges to the origin. Fix an integer 0k , which 

is called the ‘modulo’ or the ‘step size’, and join the vertex )( jV with )( kjV  by the line segment 

)()( kjVjV  for 0j .

Fibonacci Tornado 

The Fibonacci numbers nf are defined by 

121 ff  and 12 nnn fff , 2n . In the 

previous paper [2], we showed that if 1nfk  and 

R , where 2/)51(  is the golden ratio, 

there exists a 10 s  such that the vertex 

)( 2nfjV  lands on the line segment 

)()( 1 nn fjVfjV  for each 0j . By the Basic 

Operation above, we obtain the spiral pattern of 

similar triangles as shown in Figure 1 ( 2k ), 

which is called a “tornado”. As k gets larger, we 

could see that the tornado comes out like a blooming 

flower, while the argument jR  of each vertex )( jV

remains unchanged. 

 Remark that the well-known spirals as in Figure 

2 are different from our tornadoes because they have 

congruent triangles. 
Figure 1: Fibonacci Tornado. ]5,3,[
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R= C0+ 1 p0/q0  0th convergent
     C1+ 1   p1/q1  1st  convergent 

      C2+ 1   p2/q2  2nd convergent 
        C3+ 1   p3/q3  3rd convergent 

       
                     

               Cn 1       pn/qn  n-th convergent 
              

Real Tornado 

A generic real number R also generates a family of tornadoes. As is well-known (see [1]), the continued 

fraction expansion of R as in the Figure 3 is defined by 00CR , 10 0 , and 11/1 nnn C ,

10 1n  for 0n , where nC are called the partial denominators. If R is rational, it is related to the 

Euclidean algorithm and stops when 0n . The n -th convergent nn qp /  is defined by 00 Cp , 10q ,

1011 pCp , 11 Cq , and 111 nnnn ppCp , 111 nnnn qqCq  for 0n . It is known that 

nn qp /  are the best approximations of R , where 
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1  for 0n .

For example, the convergents of 3R  are 1/1, 2/1, 5/3, 7/4, 19/11, 26/15, 71/41, .... The denominators 

nq and 1nq  are coprime.  

Choose any pair of consecutive convergents nn qp / and 11 / nn qp , and denote by nqq and 1nqq .

Define the step size by qqk . Then there exists a unique 10 s  such that under the Basic 

Operation the vertex )( qqjV  lands on the segment )()( qjVqjV  and we obtain a spiral 

pattern named as the tornado ],,[ qqR , consisting of similar triangles )()()( qjVqjVjVT j

for 0j . Figure 4 presents the tornadoes ]4,3,3[],,[ qqR and ]11,4,3[ .

The basic idea of the Real Tornado was originally published in Japanese in [3].  Here we show how to 

find a 10 s . Denote the 

length of the three edges of jT

by 

)()()( qjVqjVja ,

)()()( qjVjVjb ,

)()()( qjVjVjc .

Figure 2 : A Non-Fibonacci Tornado. Figure 3 : Continued Fraction and Convergents 

[ 3 , 3, 4] [ 3 , 4, 11] 
Figure 4 : 3  Tornado. 
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By Figure 5 we can see that 
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The three angles of jT are 

)(22 kqRqR , Rq2 , and Rk2

or 

)(22 kqRqR , Rq2 , and Rk2 ,

where the signs are chosen to satisfy that sin,sin and sin  are all positive. The law of sines is 

expressed by 

sin

)(

sin

)(

sin

)( jcjbja
,

and we obtain the equation 

0)2sin()2sin()2sin( kRqRsqRs qq
.        

It is easy to see that this equation has a unique solution 10 s .

Additional Results 

Conversely, we can also prove that any possible tornado ],,[ qqR  with qq,  positive is related to the 

continued fraction expansion of R .

Theorem: Let R  be a real number and qq,  positive integers. There exists a tornado ],,[ qqR if and only 

if R  has a convergent 
n

n

q

p
 and an (intermediate) convergent

1

1

nn

nn

qcq

pcp
, 10 nCc , where we denote 

by 1,, nnnn pcppqqpp  and 1nn qcqq  such that 

(1) R is distinct from 
q

p
and

q

p
, that is, 

q

p
R

q

p
or

q

p
R

q

p
, and 

(2)  2/1}{}{ RqqR  , where 1}{0 xxx denotes the fractional part.  

See [4] for the proof and further discussions. Note that the golden ratio is a special irrational number 

which has no intermediate convergents. 
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Figure 5 : Principle. 
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12 Risez of the largest magnitude. Note that in our setting above, the ratio  tends to 0 or 1 as R

approaches to qp /  or qp /  respectively. 
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Figure 6 : Real Tornado Samples. 
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